Improved Venous Leg Ulcer Outcomes Using a Combination of Ovine Extracellular Matrix and Gentian Violet/Methylene Blue Transfer Antibacterial Foam

Charles Andersen MD, FACS, MAPWCA; Dawn Green RN, BSN, WCC; Joan Santucci MN, RN, CWCN and Emily Phillips RN
Madigan Army Medical Center, Tacoma, WA

Introduction
Compression therapy alone is often insufficient to heal venous leg ulcers (VLUs) within an acceptable timeframe.1 Ovine Extracellular Matrix (ECM) and Gentian Violet/Methylene Blue transfer antibacterial foam (GV/MBt) can be effectively used under compression therapy. Also, elevated matrix-metalloproteinases (MMP) levels play a major role in the pathophysiology of VLUs, contributing to disruption or damage of the tissue.2 ECM materials that provide broad spectrum MMP reduction, support granulation tissue formation and re-epithelialization may contribute to improved wound healing outcomes and shorter treatment times.3 The aim of this case series is to observe wound closure outcomes in VLUs using an ovine ECM covered by GV/MBt in conjunction with compression therapy.

Methods
In this retrospective observational case series, 10 patients with VLUs treated with ECM and GV/MBt were reviewed to determine days to wound closure. Age of patients ranged from 46-99 years old with the average age being 71 years old. Average size of wounds before treatment was 2.6 x 1.9 cm.

For treatment, ECM was cut to size and applied to the VLU and then covered with GV/MBt before the area was wrapped with a compression wrap (see Table 1, Steps 1 to 3). GV/MBt was utilized to address bioburden and moisture balance, ECM to address protease imbalance support granulation. Treatment was repeated every week or as required until closure of the wound.

Case Study 1
Patient: 85 year old male
Medical History: Chronic history of recurrent VLUs
Wound Description: Right lower extremity, 3.5 x 1 cm
Previous Treatments: Oral antibiotics and antibiotic cream

Pre-treatment 2 weeks:

Week 1:
2 x 0.5 cm. ECM, GV/MBt, compression wrap.

Week 5:
Wound closed

Table 1. Treatment

<table>
<thead>
<tr>
<th>Step 1: ECM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2: GV/MBt</td>
</tr>
<tr>
<td>Step 3: Compression wrap</td>
</tr>
</tbody>
</table>

Table 2. Time to wound closure

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (weeks)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Results
At 4 weeks the average size of the wounds (n=10) had reduced by approximately 80%. The time required for wound closure ranged between 3 to 12 weeks (see Table 2) with an average time of wound closure of 5.7 weeks.

The results demonstrated in VLU patients using compression with application of ECM to modulate proteases and using GV/MBt to manage moisture and bioburden improved healing times as compared to published literature.4

Conclusions
Repeated application of ECM and GV/MBt under compression for the duration of one week created overall faster wound healing times. ECM, GV/MBt and compression are a useful combination for the management of VLUs.

References and Disclosures

Financial support was provided by Aroa Biosurgery Limited (New Zealand)

4Endoform Natural Dermal Template; Hydrofera Blue READY – Transfer Antibacterial Foam; www.appulsemed.com